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Abstract: Extension of the usual matrix product has been defined in order that two any matrices have product. From a group
of square matrices many groups of rectangular matrices for the extended product can be constructed. Then an example of a
group of square matrices whose identity element is not the identity matrix has been given.
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1. Introduction

Groups theory, especially the groups of square matrices, is
among the important mathematics apparatuses use in physics.
But, in some papers in theoretical physics [1-4] we notice the
use of rectangular matrices. For example, [1] uses rectangular
matrices for constructing the generators of SU(S). That
makes us to write in this short communication about groups
of rectangular matrices.

A group is a set where, at first an operation is defined. This
operation satisfies closure, existence of identity element,
each element has an inverse with respect to the identity
element and associativity. As the title indicates, we are going
to talk the construction of groups of rectangular matrices
from a group of square matrices. So it follows that the
operation of the group of square matrices of the same
dimension should be extended to some sets of rectangular
matrices of the same dimension, and then the extended
operation will make the sets of rectangular matrices groups.
The operation in the groups of square matrices we are going
to talk in this paper is the usual multiplication of matrices.

Therefore, in this paper we will define at first the extended
multiplication of matrices. Throughout this paper we will use
these two products, usual multiplication or usual product and
extended multiplication or extended product. Some
propositions will be given, according to which we will be able
to construct groups of rectangular matrices for the extended
product, from a group of square matrices for the usual product.
Finally, we will show that the groups of rectangular matrices
constructed for this way, will be able to be talked in terms of
groups of square matrices for the usual product.

2. Extended Product of Matrices

In the following definition we are going to extend the
usual product of a matrix A by a matrix B, with the number
of the columns of A is equal to the number of the rows of

B, to the product of any two matrices.
Definition 1 Let

nc™ B =g

A:(Ai j)lsiSp,lsjs
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Define the product 4B of the matrix 4 by the matrix B
as the matrix

D Cnxr

Isisnl<jsr

AB=| 5 4B

if m<p ,and
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AB=| Z 4, B; goc
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ifm>p.
If m = p the extended product is not other than the usual
product.
Example 2

1 35
A=
(2 4 6J
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2X1+4%X3+6X%X5 2%X2+4%X4+6%6 44 56
This is like if we did the product of the square matrix 4’
by the matrix B’ obtained respectively in adding zeros at the
right side or underside of the rectangular matrices 4 and B .

1 350 1200
L 12460 (3400
A= B' =

0000 5600
0000 7800

35 44 0 0

144 56 0 0

AB =
0 0 00
0 0 00

Then after we have done the usual product we delete the
zeros at the sides.

Thus, it is obvious that the extended multiplication is
associative.

3. Constructing Groups of Rectangular
Matrices

According to the definition of the multiplication above,
from any group of square matrices of the same dimension
many groups of rectangular matrices of the same dimension
can be constructed, in adding zeros at the right side or
underside of the matrices.

Example 3 Consider the group S, of the 2X2 permutation

matrices
1 0 0 1
I = S =
0 1 1 0

The set G’ :{I '\ S'} of rectangular matrices with, for

example,
, (1 00 0 0
' =
01000
, (01 0 0 0
S'=
1 0000

is a group for the extended multiplication.
Whereas, the set G" = {I " S "} of square matrices, with

1 00 00O 01000
01000 1 00 00
I"=|0 0 0 0 0|/ S"={0 0 0 0 O
00 0O00O0 00 00O
00 0O0O0 00 00O

is a group for the usual multiplication.
In the propositions below the identity element of the group
is not necessarily the identity matrix.

For any nxn matrix A, for 0 <g <n, denote by Aq‘ the
nxq matrix, extracted from A in deleting the latest n—g¢g
columns of 4. Denote by 4; the column matrix equal to the
i-th column of 4. Aq‘ = (A1|A2|...|Aq )

Proposition 4 Let G be a group of nxn matrices, for the
usual multiplication. For p[O N,

= {(S 5,5 .‘S,-p )/S 0 G}

is a group of mx(n+p) matrices, for the extended
multiplication.

Example 5 Let S; = {I S, T,U,V, W} be the group of
3x3 permutation matrices.

1 00 1 00 0 01
I=({0 1 0| §= 0 1{T=|{0 1 0
0 0 1 1 1 00
010 0 01 010
u={1 0 0| V=1 0 0| wW=|0 0 1
0 0 1 0 0 1 00

& ={(dfr ) (shsfs){rtrlr), (U\Uzw )l )
W‘ ) ‘W }

is a group of 8x3 matrices for the extended multiplication,
where

1 0 0 1
0 VZ‘ =1 0 WZ‘ =0 0
0 0 10

Counter-example 6

G =\l syisiskeirir oo )
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is not a group for the extended multiplication, because it has
not identity element.
Example 7 Consider the group

cos@d sind
S0(2)={r@O)=| . /@0R
—-sin@ cos@

of the rotation in a plane, for the usual multiplication. Then,
the set

¢ ={-o®),) 60 R}

is a group of 2x3 matrices for the extended multiplication.

For any nxn matrix 4 , for 0< g <n, denote by 4% the
g *n matrix, extracted from A in deleting the latest n—gq

rows of 4. Denote by A’ the row matrix equal to the i-th
rowof 4. A% = (Al‘Az‘...‘A").

Proposition 8 Let G be a group of nxn matrices, for the
usual multiplication. For pON ,

S
s’
¢ ={|s"|/s0G}

i

S 14
is a group of (nm+ p)xnm matrices, for the extended
multiplication.

For a group of rectangular matrices for the extended
multiplication, in adding zeros at the right side or underside
for each rectangular matrix, element of this group, until we
obtain a set of square matrices of the same dimension, this
last set is a group of square matrices for the usual
multiplication.

Example 9 Consider the group of the 2x3matrices of the
example 7.We add zeros at the underside of the rectangular
matrices of this group, until they become square matrices.
Then, the set of square matrices

cosd sinf cosd
G"={|-sinf cosf@ -sinf|/60OR
0 0 0

obtained is a group for the usual multiplication.
According to the proposition 8 the set of rectangular
matrices

cos@ sinf cosd
—sin@ cos@ sinf
0 0 0
cos@ sinf cosd

G" = /60R

is a group for the extended product and the set of 4%4
matrices

cos@d sin@ cosf 0

G(IV) _ —-sin@ cos@ sinfd 0 JO0R
0 0 0 0
cos@d sin@ cosf 0

is a group for the usual product, whose identity element is

1 010

01 0O
I =

0 0 0O

1 010

4. Conclusion and Discussion

The extended product will not be other than the usual
product if we consider a rectangular matrix as square matrix
after adding zeros at the underside or right side. We think that
there is no danger if we replace the usual product by the
extended product because the usual product is particular case
of the extended product. Then we can do the product of
anyone matrix by any other matrix.

From a group of square matrices of the same dimension,
for the usual product, we can construct many groups of
rectangular matrices for the extended product. In the case of
finite groups, the group of the square matrices and the groups
of the rectangular matrices are of the same order.
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