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Abstract: Extension of the usual matrix product has been defined in order that two any matrices have product. From a group 

of square matrices many groups of rectangular matrices for the extended product can be constructed. Then an example of a 

group of square matrices whose identity element is not the identity matrix has been given. 
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1. Introduction 

Groups theory, especially the groups of square matrices, is 

among the important mathematics apparatuses use in physics. 

But, in some papers in theoretical physics [1-4] we notice the 

use of rectangular matrices. For example, [1] uses rectangular 

matrices for constructing the generators of SU(5). That 

makes us to write in this short communication about groups 

of rectangular matrices.  

A group is a set where, at first an operation is defined. This 

operation satisfies closure, existence of identity element, 

each element has an inverse with respect to the identity 

element and associativity. As the title indicates, we are going 

to talk the construction of groups of rectangular matrices 

from a group of square matrices. So it follows that the 

operation of the group of square matrices of the same 

dimension should be extended to some sets of rectangular 

matrices of the same dimension, and then the extended 

operation will make the sets of rectangular matrices groups. 

The operation in the groups of square matrices we are going 

to talk in this paper is the usual multiplication of matrices. 

Therefore, in this paper we will define at first the extended 

multiplication of matrices. Throughout this paper we will use 

these two products, usual multiplication or usual product and 

extended multiplication or extended product. Some 

propositions will be given, according to which we will be able 

to construct groups of rectangular matrices for the extended 

product, from a group of square matrices for the usual product. 

Finally, we will show that the groups of rectangular matrices 

constructed for this way, will be able to be talked in terms of 

groups of square matrices for the usual product. 

2. Extended Product of Matrices 

In the following definition we are going to extend the 

usual product of a matrix A  by a matrix B , with the number 

of the columns of A  is equal to the number of the rows of 

B , to the product of any two matrices.  
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This is like if we did the product of the square matrix A′
by the matrix B′  obtained respectively in adding zeros at the 

right side or underside of the rectangular matrices A  and B . 
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Then after we have done the usual product we delete the 

zeros at the sides. 

Thus, it is obvious that the extended multiplication is 

associative. 

3. Constructing Groups of Rectangular 

Matrices 

According to the definition of the multiplication above, 

from any group of square matrices of the same dimension 

many groups of rectangular matrices of the same dimension 

can be constructed, in adding zeros at the right side or 

underside of the matrices. 

Example 3 Consider the group S2 of the 22×  permutation 
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







=

10

01
I

, 








=

01

10
S

 

The set { }SIG ′′=′ , of rectangular matrices with, for 

example, 









=′

0

0

0

0

0

0

1

0

0

1
I

, 









=′

0

0

0

0

0

0

0

1

1

0
S

 

is a group for the extended multiplication. 

Whereas, the set { }SIG ′′′′=′′ ,  of square matrices, with 
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is a group for the usual multiplication. 

In the propositions below the identity element of the group 

is not necessarily the identity matrix. 

For any nn ×  matrix A , for nq <<0 , denote by q
A the 

qn ×  matrix, extracted from A  in deleting the latest qn −  

columns of A . Denote by iA  the column matrix equal to the 

i-th column of A . ( )qq
AAAA …21= . 

Proposition 4 Let G  be a group of nn ×  matrices, for the 
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is a group of )( pnn +×  matrices, for the extended 

multiplication. 

Example 5 Let { }WVUTSIS ,,,,,3 =  be the group of 

33×  permutation matrices. 
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is a group of 38× matrices for the extended multiplication, 

where 
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Counter-example 6 
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is not a group for the extended multiplication, because it has 

not identity element. 

Example 7 Consider the group 
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of the rotation in a plane, for the usual multiplication. Then, 

the set 
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is a group of 32×  matrices for the extended multiplication. 

For any nn ×  matrix A , for nq <<0 , denote by 
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is a group of npn ×+ )( matrices, for the extended 

multiplication. 

For a group of rectangular matrices for the extended 

multiplication, in adding zeros at the right side or underside 

for each rectangular matrix, element of this group, until we 

obtain a set of square matrices of the same dimension, this 

last set is a group of square matrices for the usual 

multiplication. 

Example 9 Consider the group of the 32× matrices of the 

example 7.We add zeros at the underside of the rectangular 

matrices of this group, until they become square matrices. 

Then, the set of square matrices 
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obtained is a group for the usual multiplication. 

According to the proposition 8 the set of rectangular 

matrices 
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is a group for the extended product and the set of 44×  

matrices 

( )

























∈





















−
= RG

IV θ

θθθ

θθθ
θθθ

/

0cossincos

0000

0sincossin

0cossincos

 

is a group for the usual product, whose identity element is 
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4. Conclusion and Discussion 

The extended product will not be other than the usual 

product if we consider a rectangular matrix as square matrix 

after adding zeros at the underside or right side. We think that 

there is no danger if we replace the usual product by the 

extended product because the usual product is particular case 

of the extended product. Then we can do the product of 

anyone matrix by any other matrix. 

From a group of square matrices of the same dimension, 

for the usual product, we can construct many groups of 

rectangular matrices for the extended product. In the case of 

finite groups, the group of the square matrices and the groups 

of the rectangular matrices are of the same order. 
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